Features

The JSX-1000S is an X-ray fluorescence spectrometer that provides quick, easy elemental analysis using touch screen operation. It is equipped with functions for conventional qualitative and quantitative analysis (FP method, calibration curve method), as well as screening for RoHS elements. With a variety of both hardware and software options available, it is customizable to cover a wide range of analysis needs.

JSX-1000S in motion

Click the "replay" button in the box above, and the movie will start(for 4 minutes)

Simple Operation

Simply set the sample and touch the screen; that's how easy it is to operate. Another touch of the screen is all it takes to switch between analysis results and spectrum display. It is as easy to operate as a tablet PC or a smart phone. (Operation using a keyboard and a mouse is also supported.)

Set & Touch simple operation

A simple, intuitive operation GUI

①Set the sample

②Select the collimator(analysis region) and touch 'Run'

③Analysis results displayed in real-time

	Statement of Concession, Name	COLUMN A	and the second division of the second divisio		
the local distance in the second se				10100	1100
The second se	\$03	0.4117	0.0134	. 76	-
- CONTRACTOR	K20	12.2400	0.0594	76	-
 Account of the second se	NaDO	0.0388	0.2699		-
A Second seco	MgO	0.0000	0.0493	. %	
The second se	A203	15.8500	0.1559	- 54	
The second se	502	71.1300	0.3112		
· · · · · · · · · · · · · · · · · · ·	- Cr203	0.0008	0.0013		10
	HHO	0.0005	0.0010		
	Fe203	0.0254	0.0017	- 14	
	CvO	0.0047	0.0008	-	
Parameter () and a low of the second	Ga205	0.0015	0.0006		
10.00	Rb20	0.2674	0.0016	- 54	+
		the second se	A		
No. of Concession, Name	Ru02	0.0002	0.0013		
	Fe203 Cu0 Ga203 Rb20	0.0254 0.0047 0.0015 0.2674	0.0000 0.0000 0.0006 0.0016		

④Displya of analysis conditions and spectrum

11411 50.00 KV	and the second se	
tillet 0.080 mA		-
212-9- 9.00 mm		.
		100
RIER VAC	1	THEFT
347946 60.00 sec		· 14*
woman 0.00 sec		1000
10010-1 59556 cps		TRACT

High Sensitivity & High Throughput

JEOL's own SDD (silicon drift detector) and newly-developed optical system, in combination with filters designed to handle the entire energy range, make it possible to achieve high-sensitivity analysis.

The sample chamber vacuum unit (option) further increases detection sensitivity for

lighter elements.

Sensitive analysis throughout the entire energy range

High-sensitivity analysis can be performed across the entire energy range using a maximum of 9 types of filters and a sample chamber vacuum unit.

* Cl, Cu, Mo and Sb are options

Example: trace element detection (10 ppm or less)

Providing Solutions

With solution based applications, the desired analysis can be executed automatically according to pre-recorded recipes. Simply select the desired solution icon from the solution application list for automated analysis and display of results. Solution applications offer simplified analysis in a wide range of fields.

The new Smart FP (Fundamental Parameter) method makes it possible to obtain highlyaccurate quantitative results without the need to prepare a standard sample, and includes automatic correction for thickness and residual ingredient balance. (The residual balance correction and thickness correction functions are only applicable to organic samples.)

Thickness	Crrection	Cr	Zn	Cd	Pb	Automatic balance
0.5mm	0.5mm No		0.037	0.001	0.002	99.76
3.8mm		0.012	0.109	0.004	0.006	99.64
0.5mm	Yes	0.011	0.137	0.015	0.010	99.54
3.8mm		0.011	0.134	0.016	0.011	99.55
Standar	d value	0.010	0.125	0.014	0.010	

Specifications

Analysis element range	Mg∼U
	F~U (Option)
X-ray generator	5 to 50 kV, 1 mA
Target	Rh

Primary filter: 9 types, Automatic exchange	Standard : OPEN, ND, Cr, Pb, Cd		
	Option : Cl, Cu, Mo, Sb		
Collimator: 3 types, Automatic exchange	0.9mm, 2mm, 9mm		
Detector	Silicon drift detector (SDD)		
Specimen chamber size	300mm(D)×80mm(H)		
Specimen chamber atmosphere	AIR / VAC (Option)		
Chamber observation mechanism	Color camera		
Operation computer	Windows [®] Desktop PC with touch panel		
Analysis software (Standard)	Qualitative analysis (Automatic, KLM marker, Sum peak display, Spectrum search) Quantitative analysis (Bulk FP method, Calibration curve method) RoHS analysis solution (Cd, Pb, Cr, Br, Hg) Simplified analysis solution Report creation software		
Software for daily check (Standard)	Tube bulb aging, Energy check, Intensity check		

Notices: Windows® is either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Major options

- SAMPLE CHAMBER VACCUM UNIT
- AUTO SAMPLE CHANGER

- FILTER SET
- FILTER FP METHOD ANALYSIS SOFTWARE
- THIN FILM FP METHOD ANALYSIS SOFTWARE
- SUM PEAK REMOVAL SOFTWARE
- Ni plating screening solution
- Sn plating screening solution
- Halogen screening solution

Application **Application JSX-1000S**

- <u>Bionote</u>
- <u>Foodnote</u>
- Film Thickness by Thin Film FP Method
- Quantitative and Qualitative Analysis of Inorganic Elements in Plastic by FP Method
- Quantitative Analysis of Oxides using the FP Method
- Qualitative and Quantitative Analysis of Metal Alloys by FP Method
- Analysis with separation of As and Pb in Iron and Steel is possible.
- Analysis of Cracks in Brass Piping Parts
- Test /Analysis of Foreign Substances on Resin surface by X-ray analysis
- LIBnote